

New Industrial Paradigms: i4.0 & Sustainability

SIM4.0 WORKSHOPS

Castelo Branco, 13 March – Sanjotec, 14 March Évora, 15 March 2018

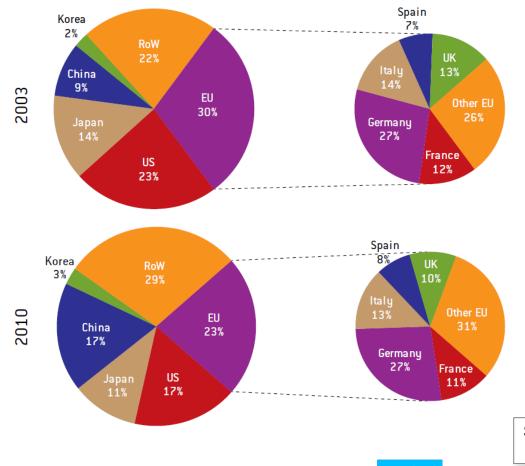
EU Efforts to Support Industrial Sustainability & Digitisation

Erastos Filos, PhD

Directorate « Industrial Technologies » DG Research & Innovation

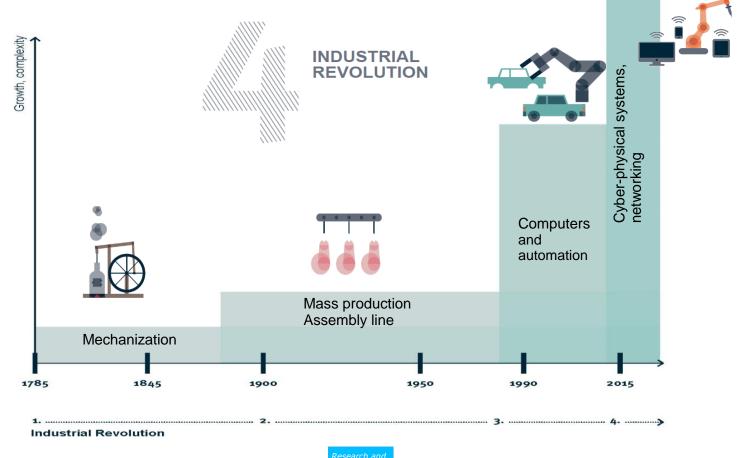
Presentation Outline

- Adding Value to Manufacturing in Europe
- Technological Innovation & ICT Driving Europe's Re-Industrialisation
- The 'Factories of the Future' PPP & Digitising European Industry Initiative
- Towards a Platform-driven Industry


Manufacturing Matters

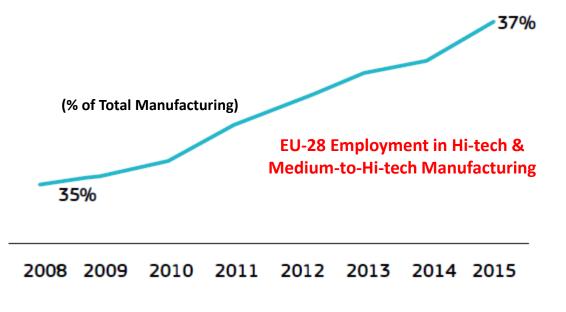
- 16% of EU GDP
- 20% of direct jobs and twice as many indirect jobs
- 66% of private EU R+D+I investments
- Part of a complex global economic system

Manufacturing: The Heartbeat of EU's Economy



- EU: world leader in many industrial domains
 - e.g. mechanical engineering: 37% of global market share
- 28% of final energy consumption
- R&D intensive, drives innovation

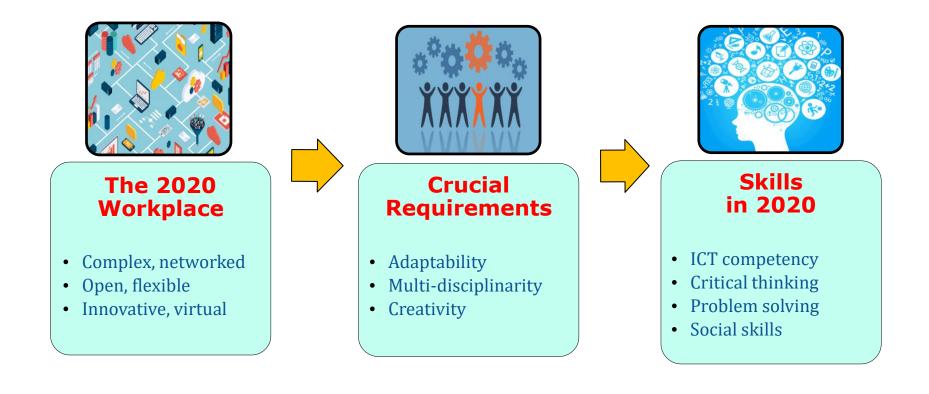
Source: R. Veugelers (2013): Manufacturing Europe's Future, Bruegel



The Revolution Context

EU-28 Manufacturing Moving Up ...

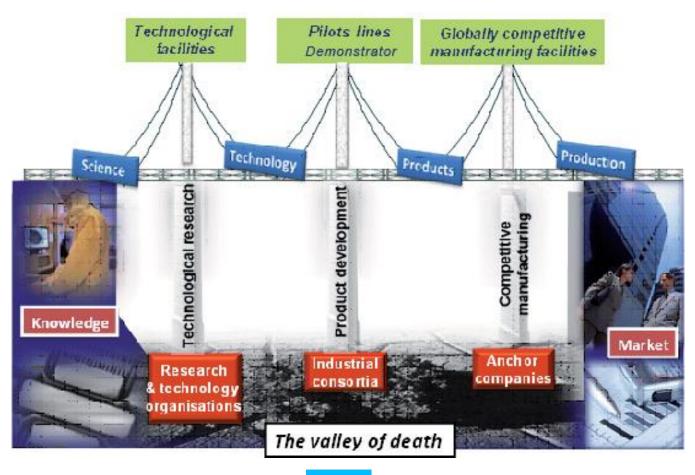
Source: Eurostat


... due to R&D and Innovation

Employment of ICT specialists in the EU in absolute terms and as a share of total employment, 2006-2015

ICT employment, 1000s ——share in total, % 9000 4,00 8000 3,50 7000 3,00 6000 2,50 5000 2,00 4000 1,50 3000 1,00 2000 0,50 1000 0 0,00 2006 2007 2008 2010 2011 2012 2013 2015 2009 2014 Source: Eurostat 2016

Workplace Trends



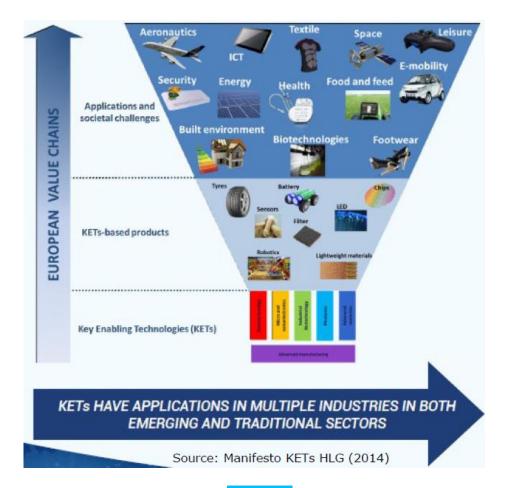
8

How to Advance Industry?

1# Innovation

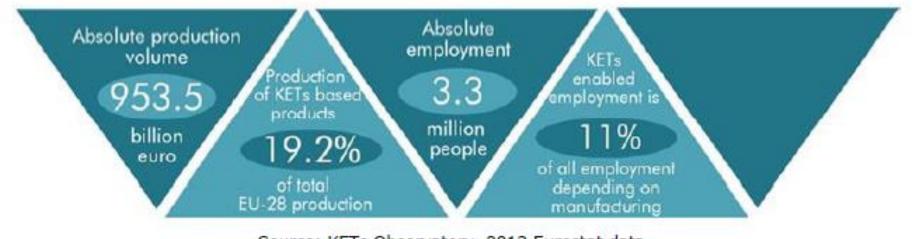
How to Advance Industry?

2# Deployment of Advanced Technologies


Global CEO survey: Ranking of future importance of advanced manufacturing technologies by executives

Advanced Manufacturing Technologies	US	China	Europe
Predictive analytics	1	1	4
Smart, connected products (IoT)	2	7	2
Advanced materials	3	4	5
Smart factories (IoT)	4	2	1
Digital design, simulation, and integration	5	5	3
High performance computing	6	3	7
Advanced robotics	7	8	6
Additive manufacturing (3D printing)	8	11	9
Open-source design/Direct customer input	9	10	10
Augmented reality (to improve quality, training, expert knowledge)	10	6	8
Augmented reality (to increase customer service & experience)	11	9	11

Source: Deloitte Touche Tohmatsu Limited and US Council on Competitiveness, 2016 Global Manufacturing Competitiveness Index



Industrial Deployment of Key Enabling Technologies

Value Created by the Deployment of KETs

Source: KETs Observatory, 2013 Eurostat data

A Renewed KETs Concept

Drivers: Globalisation – Digitisation – Knowledge Society Rational: Global Excellence, Systemic Relevance, European Sovereignty, Sustainability, Multi-purpose

KETS		Examples	Societal Challenges	Missions	
	Advanced Manufacturing Technologies	Smart, high performance, high precision and additive manufacturing and processes, Robotics, Process Industry, Green Propulsion Technologies, Integrated Bio-refineries	ENVIRONMENT		
Production Technologies	Advanced Materials and Nanotechnologies	High performance, smart sustainable materials, Nanomaterials, Nanotechnology, Biomaterials, 2D Materials, Light Weight Technologies, New Chemistry	ENERGY	Missions (3)	
	Life-Science Technologies	Industrial biotechnology, High throughput biology, Automation for biology, Synthetic biology, Genomics (Genome Engineering/Synthetic Genomes), Cell & tissue engineering, Biologisation of manufacturing, Biosensors, Bio Activators, Bio Actuators, Lab on a Chip, New Chemistry, Neurotechnologies	MOBILITY	(
Digital Technologies	Micro-Nanoelectronics and Photonics	IoT, Smart/Intelligent sensors, Quantum technology, Supercomputing (high power, high performance, neuro- computing, beyond CMOS), Displays (LCD, Plasma) & Lighting (LED, OLED), Photonics integrated circuits, Biophotonics	HEALTH & WELLBEING	Missions	
	Artificial Intelligence	Data generation and handling, Big data analytics, Machine learning and deep learning, Smart Robots, virtual agents,	FOOD & NUTRITION		
		software technologies, decision making technologies	SECURITY		
Cyber Technologies	Security and Connectivity	Secure and Authenticated Communication, Avoiding identify theft, Data protection and privary, IoT, Data/Connectivity Safety and Security, Human-Machine Interfaces, Human-Computer / Robot Interaction, 5G, baseband/processor platforms	PRIVACY	Missions 🚱	
		e-Governance, e-Administration, e-Voting, Cyber-Physical Systems, eSafety and eSecurity, Technology Assessment, Blockchain	INCLUSION & EQUALITY		

EU-Driven Policies Impacting Industry

30+ Years of Industrial R&D in Europe

- 1984: Framework Programme I Esprit/BRITE
 - Bringing together suppliers + users of manufacturing technologies
- 1993: Advanced Information Technology (AIT)
 - Automotive & aerospace industries
- 2003: Manufuture Technology Platform
- 2008: Factories of the Future (FoF)
- 2014: FoF, SPIRE, SPARC, Photonics, etc.

Horizon 2020: Integrating R&D + Innovation

- A single programme:
 - Bringing together 3 programmes/initiatives that were separated before: FP7 CIP EIT
 - Budget: ~ € 80 bn (2014-2020)
- A coupling of research to innovation:
 - From the lab to the market
- Focus on challenges facing society in Europe:
 - e.g. health, clean energy, efficient transport
- Simplified access ...
 - ... for companies, universities, institutes in all EU countries

Public Private Partnerships

Example: The European Factories of the Future Research Association

www.effra.eu

- Represents the private side of PPP 'Factories of the Future'
- Scope:
 - Multi-sector activities
 - ✓ Covering whole supply chain
 - Pre-competitive R&I projects to strengthen advanced manufacturing in Europe
- EFFRA works closely with European Commission

Why A Factories of the Future PPP

- Manufacturing is a key contributor to the EU's economic prosperity:
 - Employment & wealth creation
 - Exports
 - Technological competence & market leadership
- Complex R&D-intensive activity, requiring long term horizon:
 - *R&D costs & risks with high & long RoI (market failure)*
 - R&I needs public support, as e.g. USA, China, Korea, Japan
- Tech capabilities & supply chains dispersed across EU:
 - Need critical mass of stakeholders & leadership at EU level
 - Contractual PPP effort for timely deployment of new technologies, across sectors & also in SMEs

https://bookshop.europa.eu /en/factories-of-the-futurepbKI0213266/

Factories of the Future: Going Forward Factories 4.0 & Beyond

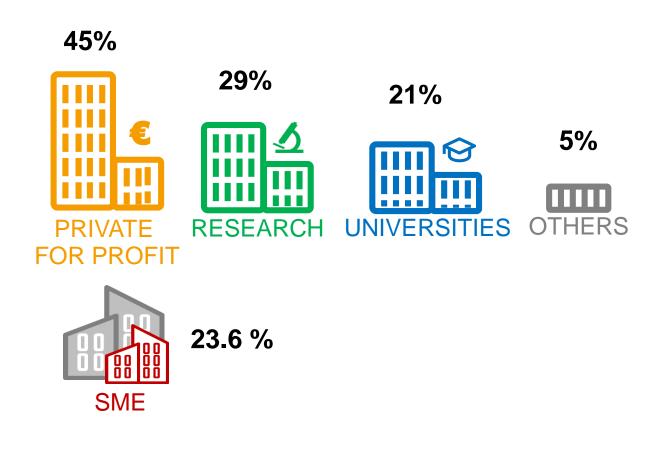
Key priorities for FoF 18-19-20

Research headlines for FoF 18-19-20

Agile value networks: Lot-size one distributed manufacturing

Excellence in manufacturing: Advanced manufacturing processes and services for zero-defect processes and products

The human factor: Human competences in synergy with technological assets


> Sustainable value networks: Manufacturing in a circular economy

> > Interoperable digital manufacturing platforms: connecting manufacturing services

Profile of Beneficiaries in PPP R&D

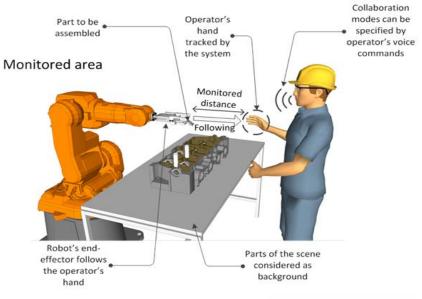
Factories of the Future: Progress in Figures

- 200+ projects (2009-2018)
- 1,300+ organisations participating
- 60% industrial participation

Indicator	Initial Figures
Number of patent applications	30
Standardisation inputs	50
Number of developed systems & technologies	364
Estimation of private investments related to the projects and the FoF PPP Roadmap	2.5 – fold leverage of investments
Contribution of the PPP projects to the reduction of energy use and CO ₂	20% on average
Contribution of the PPP projects to the reduction of waste and material use	15% on average
Becoreh and	

Project Examples (1/2)

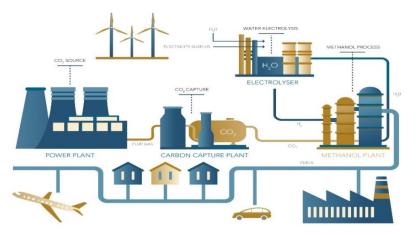
Symbiotic Human-Robot Collaborative Assembly: Technologies, Innovations & Competitiveness


€6.5 million in EC funding Start: April 2015 End: March 2019

Expected Impacts:

- No-fence safe Human-Robot collaboration
- Increased use of affordable robots by SMEs
- Improvement of productivity by task redistribution
- Re-shoring of industrial activities to Europe

http://www.symbio-tic.eu/



Project Examples (2/2)

Synthesis of methanol from CO₂

€8.6 million in EC funding Start: Dec 2014 End: Nov 2018

Expected impacts:

- CO2 emissions reduction in C-leakage sensitive industries, e.g. steel, cement
- Support target of 10% use of renewable energy in transportation
- Reduce Europe's dependency on methanol imports

http://www.mefco2.eu/

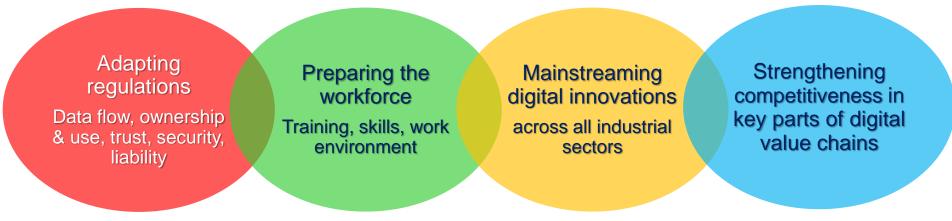
Delivering Progress: Start-Ups

Uptake of project results has led to spinoffs and business start-ups

FEMTOprint SA

Spin-off from Femtoprint project: Commercialised project result = Femtoprinter (3D printing for glass micro-devices)

Sentio


Spin-off from VISTRA project: Commericialised project result = Training system for complex assembly

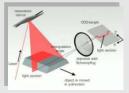
Cognibotics

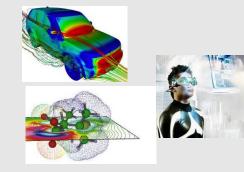
Spin-off from COMET project: Unique system to monitor & compensate robot wear

Digitising European Industry

A coordination framework for EU and national initiatives

📁 #DigitiseEU


https://ec.europa.eu/digital-single-market/en/policies/digitising-european-industry


From Digitising Factories to Digitising Industry

Laser-based manufacturing

Cyber-physical systems for process (chain) optimisation

Modelling, Simulation, Analytics

Robotics

Platforms-Based Factory Environments?

Examples of Open Platforms

1 +

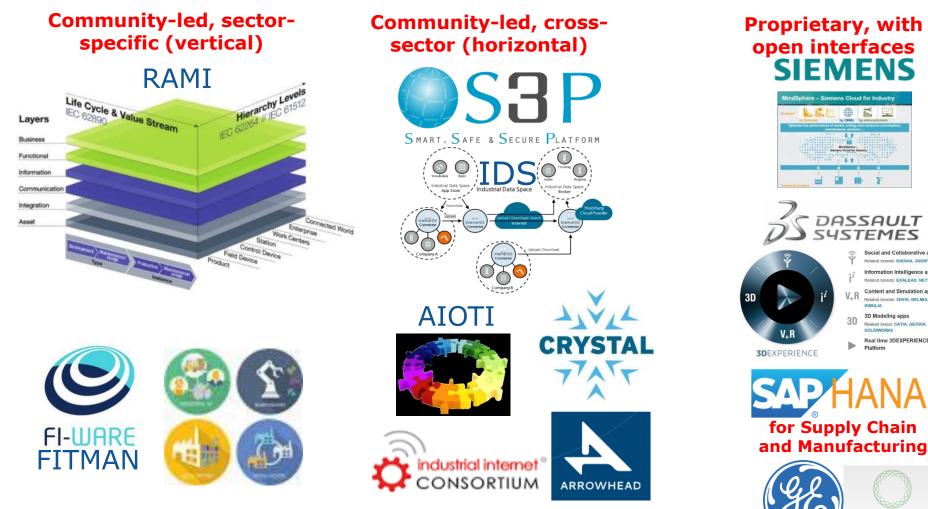
V₊R

3D

► Platform

8

Social and Collaborative apps


Related brands: ENOVIA 3DSWYM Information Intelligence apps Related brands: EXALEAD, NETVIBES Content and Simulation apps

Related brands: 3DVIA, DELMIA, SIMULIA

Related brand: CATIA, GEOVIA, SOLIDWORKS Real time 3DEXPERIENCE

Predix

3D Modeling apps

Framework of DEI Activities

Digital Innovation Hubs (DIH) Calls

WHAT DOES INNOVATION **HUB**OFFER

A place where companies can get help to improve their business through digital innovations

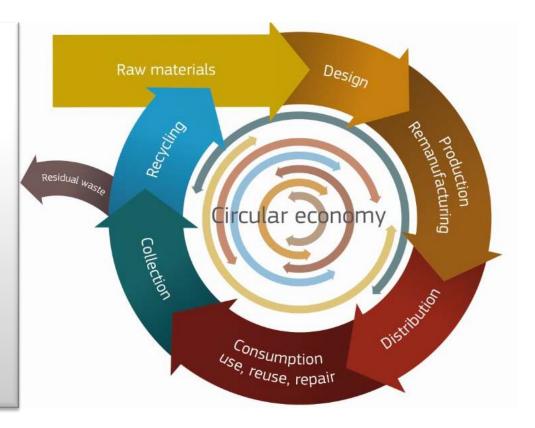
GOAL: ensure that every company, small or large, high-tech or not, can fully benefit from digital opportunities

EXPERIMENT WITH ICT TECHNOLOGY

SUPPORT TO FIND **FINANCE & FOLLOW-UP INVESTMENTS**

DIGITAL SKILLS-TRAINING

INNOVATION **ECOSYSTEM**



Research and

Supporting a Circular Economy

- No longer linear
- Extended life times
- Cross-sector
- Multi-stakeholder
- Innovation in all forms
- Design strategies
- New business models
- Demand-side measures

Further Information

- **Contact:** erastos.filos@ec.europa.eu
- Horizon 2020 Research Themes & Calls: ec.europa.eu/research/participants/portal
- Information on PPPs: ec.europa.eu/research/industrial_technologies/
- **Digitising European Industry Page:** https://ec.europa.eu/digital-single*market/en/policies/ digitising-european-industry*

43545151

http://ec.europa.eu/new sroom/dae/document.cf m?action=display&doc i d=15244

http://ec.europa.eu/rese arch/industrial_technolo gies/pdf/re finding indu stry_022018.pdf